

Environmental Management Australia

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

> PO Box 6398 Silverwater NSW 1811 Tel: (02) 9737 9991

E-Mail: info@stephensonenv.com.au

EMISSION TEST REPORT (ETR) No. 7362A/S26193/23

STYRENE SCRUBBER EMISSION MONITORING

ROCBOLT RESINS PTY LIMITED

SMEATON GRANGE, NSW 2567

PROJECT No.: 7362A/\$26193/23

DATE OF SURVEY: 23 NOVEMBER 2023

DATE OF ISSUE: 12 DECEMBER 2023

EMISSION TEST REPORT No. 7362A/S26193/23

The sampling and analysis was commissioned by:

Client Organisation: Rocbolt Resins Pty Limited

> Contact: Andrew Sykes

Address: 40-44 Anzac Avenue, Smeaton Grange NSW 2567

Telephone: 02 4647 8388

Email: asykes@rocboltresins.com.au

Project Number: 7362A/S26193/23

Test Date: 23 November 2023

Production Conditions: Normal operating conditions during testing

Dry gas density, volumetric flowrate, velocity, Analysis Requested:

> temperature, moisture, molecular weight of stack gases, nitrogen oxides, particulate matter less than 10 microns, volatile organic compounds including styrene and

benzene

Sample Locations: Styrene dry scrubber exhaust stack

Sample ID Nos.: See attachment A

Identification The samples are labelled individually. Each label

> recorded the testing laboratory, sample number, sampling location (or Identification) sampling date and

time and whether further analysis is required.

This report cannot be reproduced except in full.

Test	Test Method Number for Sampling & Analysis	Laboratory Analysis & Report No.		
Dry Gas Density	NSW TM-23, USEPA M3			
Moisture	NSW TM-22, USEPA M4			
Molecular Weight of Stack Gases	NSW TM-23, USEPA M3	_		
Oxides of Nitrogen	NSW TM-11, USEPA M7E	Trinity Consultants Australia;		
Particulate Matter less than 10 microns	NSW OM-5, USEPA M201A	NATA Accreditation No. 15841; Report No. 237401.0192		
Stack Pressure & Volumetric Flow	NSW TM-2, USEPA M2	-		
Stack Temperature	NSW TM-2, USEPA M2	-		
Velocity	NSW TM-2, USEPA M2	_		
Volatile Organic Compounds (styrene, benzene, total as n- Propane)	NSW TM-34, USEPA M18	TestSafe Australia, NATA Accreditation No. 3726, Report No. 2023-5908		

Deviations from Test Methods

Nil

Sampling Times

NSW - As per Test Method requirements or if not specified

in the Test Method then as per Protection of the

Environment Operations (Clean Air) Regulations Part 2.

Reference Conditions

NSW - As per

- (1) Environment Protection Licence conditions, or
- (2) Part 3 of the Protection of the Environment Operations (Clean Air) Regulations

All associated NATA endorsed Test Reports/Certificates of Analysis are provided in Attachment A.

Issue date: 12 December 2023

P W Stephenson Managing Director

1.1 SCOPE OF WORK

The scope of work undertaken at Rocbolt Resins, Smeaton Grange, on October 13, 2022 is tabled below. Rocbolt Resins holds Environment Protection Licence (EPL) No. 20944.

Parameter	Styrene Scrubber Exhaust Stack	Units of Measure	NSW Approved Test Method
VOCs including Styrene and Benzene	2 samples	mg/m³ or g/s	OM-2, TM-34
Particulate matter less than 10 microns	1 sample	mg/m³	OM-5, USEPA 201A
Nitrogen Oxides	Continuous	mg/m³	TM-11
Dry Gas Density	✓	kg/m²	TM-23
Moisture	✓	%	TM-22
Molecular weight of stack gases	✓	g.g-mole	TM-23
Temperature	✓	K	TM-2
Velocity	✓	m/s	TM-2
Volumetric flowrate	✓	m³/s	TM-2

Key:

 kg/m^3 = kilograms per cubic metre

mg/m³ = milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)

g/s = grams per second

% = percentage

g.g-mole = grams per gram mole
g/s = grams per second

°C = degrees Celsius

TM = test method

m/s = metres per second

m³/s = dry cubic metre per second 0°C and 101.3 kilopascals (kPa)

AS = Australian Standard

hr = hour

* = method agreed to by Chris Kelly, NSW EPA. Refer Benbow Environmental.

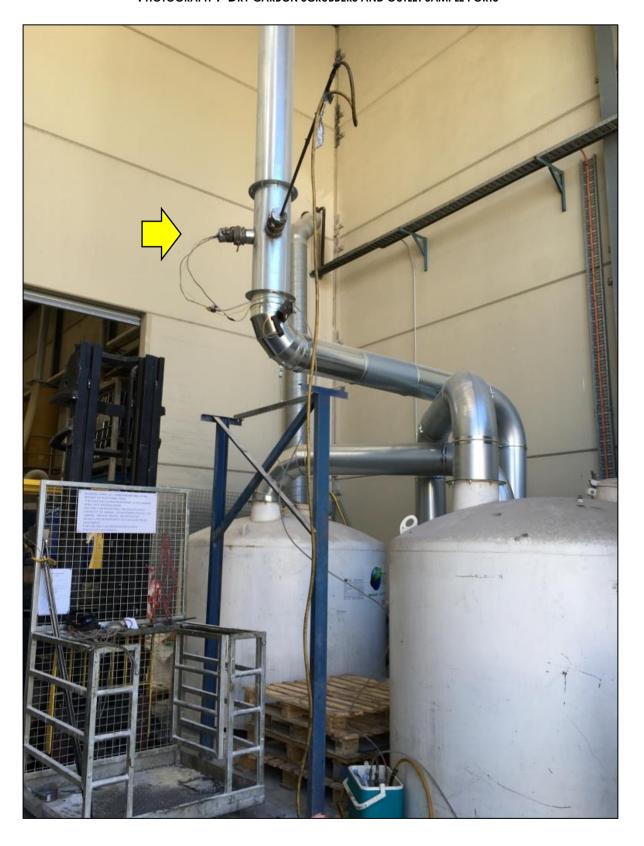
1.2 PRODUCTION AND SAMPLING CONDITIONS

Rocbolt Resins personnel considered the manufacturing facility was operating under typical conditions on the day of testing. Details of production conditions are available on request.

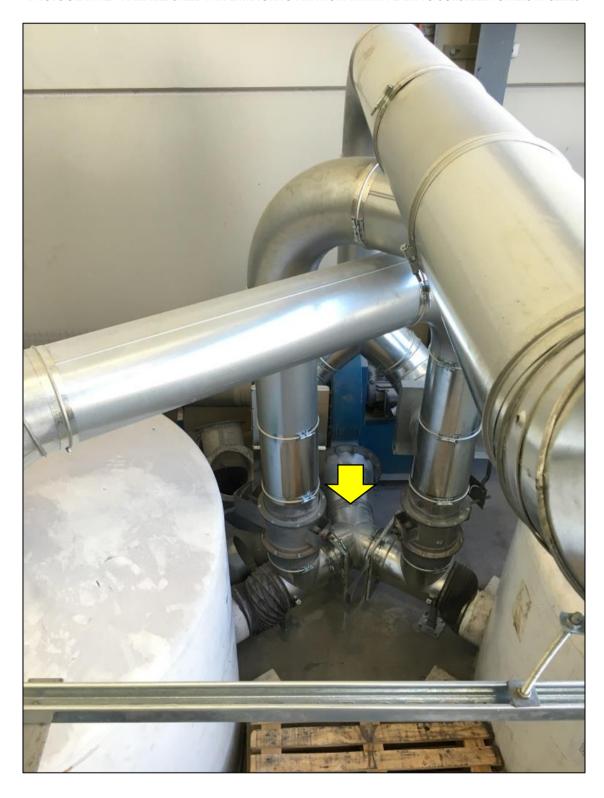
The following description of the process was supplied by Rocbolt Resins,

Rocbolt Resins manufactures resin capsules used as reinforcement for rocks/strata in the mining industry in conjunction with steel bolts and cables.

The capsules are a 2 part capsule, an outer plastic skin, sealed at both ends with clips and a separate inner compartment. The larger compartment consists of a highly viscous polyester resin mastic paste comprising approximately 20% polyester resin (contains Styrene monomer) & 80% inert limestone fillers. The smaller compartment consists of catalyst containing inert limestone fillers, benzoyl peroxide paste and oil or water as the carrier. The ratio of the two compartment ranges from 80:20 to 93:7 by weight.


1.3 SUMMARY OF EMISSION TEST RESULTS – 23 NOVEMBER 2023

Parameter		Unit of measure	Average Measured Concentrations 23 November 2023 Exhaust Stack	EPL Licence 20944 Limit
Sturono	(as Styrene)	mg/m³	7.7	220
Styrene	MER (as Styrene)	g/s	0.0023	
Benzene	(as Benzene)	mg/m³	<0.017	
benzene	MER (as Benzene)	g/s	<0.0000053	
VOC (total)	(as n- propane)	mg/m³	10.15	
D) (concentration	mg/m³	<0.15	
PM_{10}	MER	g/s	0.000044	
Oui dos of mitus con	concentration	mg/m³	<0.21	
Oxides of nitrogen	MER	g/s	<0.00006	
Stack temperature	•	°C	26	
Velocity		m/s	4.7	
Volumetric flow		m³/s	0.295	
Moisture		%	2.5	
Molecular weight dry	stack gas	g/g mole	28.85	


Key:	EPL	=	Environment Protection Licence
	MER	=	Mass Emission Rate
	VOC	=	Volatile organic compounds
	mg/m³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
	g/s	=	grams per second
	°C	=	degrees Celsius
	m/s	=	metres per second
	m^3/s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
	%	=	percentage
	<	=	less than
	g/g mole	=	grams per gram mole
	kg/m³	=	Kilograms per cubic metre
	kPa	=	Kilo Pascals
		=	not specified in EPL 20944
			-

1.4 DRY SCRUBBER SAMPLING LOCATIONS

PHOTOGRAPH 2 VARIABLE SPEED FAN EXTRACTING AIR FROM WITHIN PLANT TO SCRUBBER TOWERS IN SERIES

PHOTOGRAPH 3 DRY SCRUBBER MANUFACTURER'S DETAILS

1.5 CONCLUSIONS

Emissions were monitored on the discharge side of the two dry carbon scrubbing units connected in series, at the Rocbolt Resins manufacturing facility with the following results:

- The average Styrene emission concentration (reported as Styrene) was 7.7 mg/m³ which was compliant with the EPL limit of 220 mg/m³. The styrene mass emission rate (MER) was less than 0.0023 grams per second (g/s).
- The average benzene MER (reported as benzene) was less than 5.3 X 10-6 g/s;
- The average total VOC MER (reported as n-propane) was 0.003 g/s;
- o The average emission concentration of Oxides of Nitrogen (NO_x) (expressed as nitrogen dioxide (NO_2)) was <0.21 mg/m³. The NO_x MER was <0.00006 g/s.
- \circ The average PM₁₀ emission concentration was <0.15 mg/m³. The PM₁₀ MER was 0.00004 g/s.
- o Rocbolt Resins advised that the variable speed extraction fan serving the scrubber system was running at its normal set point (20 Hertz) during the system efficiency testing. This is of the order of 50% of total flow;
- However, the fan speed is variable depending on demand for extraction within the plant. Rocbolt Resins advise that this is both an energy conservation and scrubber efficiency optimisation policy.
- Sampling plane location is satisfactory for sampling of gases and low concentrations of very fine particles which have been filtered through two beds of activated carbon. However, the sampling plane could be relocated further downstream but would have no impact on this emission test work for these parameters.

ATTACHMENT A – NATA CERTIFICATES OF ANALYSIS

TESTSAFE NSW – REPORT NO. 2023-5908

TCA- REPORT NO. 237401.0192

SEMA - CHAIN OF CUSTODY \$26251-7362

2023-5908

Peter Stephenson Stephenson Environmental Management Australia PO Box 6398 SILVERWATER NSW 1811

Samples analysed as received

Lab. Reference:

SAMPLE ORIGIN: 7362

DATE OF INVESTIGATION: 23/11/2023 DATE RECEIVED: 24/11/23

ANALYSIS REQUIRED: Volatile Organic Compound

REPORT OF ANALYSIS OFFICIAL: Sensitive - Personal

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

Increment and total pagination can be seen on the following pages.

Martin Mazereeuw

Manager

Date: 30/11/23

TestSafe Australia – Chemical Analysis Branch Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: lab@safework.nsw.gov.au W: testsafe.com.au ABN 81 913 830 179 IIAC MRA NATA

Accreditation No. 3726

Accredited for compliance with ISO/IEC 170.25 - Testing

Page 1

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

 Client: Stephenson
 Date Sampled: 23/11/2023

 Sample ID: 728862
 Date Analysed: 29/11/2023

 Reference Number: 2023-5908-1

w.	Composed	CAEN	Front	Back	N-	Compounds	CAEN	Front	Back	
No	Compounds	CAS No	μg/se	ction	No	Compounds	CAS No	μg/section		
П	Aliphatic hydrocarbons	IIS (LOQ =1µg/c/s; #10, #18 - #23 =5µg/c/s)			П	Aromatic hydrocarbons	15 (LOQ = Iµg/compound/section)			
1	2-Methylbutane	78-78-4	⊲L0Q	-IOQ	39	Benzene	71-43-2	⊲LOQ	⊲L0Q	
2	n-Pentane	109-66-0	⊲LOQ	⊲LOQ	40	Ethylbenzene	100-41-4	⊲LOQ	⊲LOQ	
3	2-Methylpentane	107-83-5	⊲LOQ	⊲LOQ	41	Isopropyibenzene	98-82-8	⊲LOQ	⊲LOQ	
4	3-Methylpentane	96-14-0	⊲LOQ	⊲LOQ	42	1,2,3-Trimethylbenzene	526-73-8	⊲LOQ	⊲LOQ	
5	Cyclopentane	287-92-3	⊲LOQ	⊲LOQ	43	1,2,4-Trimethylbenzene	95-63-6	⊲LOQ	∆DOT	
6	Methylcyclopentane	96-37-7	-LOQ	⊲LOQ	44	1,3,5-Trimethylbenzene	108-67-8	⊲LOQ	⊲LOQ	
7	2,3-Dimethylpentane	565-59-3	<l0q< td=""><td>⊲L0Q</td><td>45</td><td>Styrene</td><td>100-42-5</td><td>44</td><td>⊲L0Q</td></l0q<>	⊲L0Q	45	Styrene	100-42-5	44	⊲L0Q	
8	n-Hexane	110-54-3	⊲L0Q	⊲LOQ	46	Tohiane	108-88-3	⊲LOQ	⊲LOQ	
9	3-Methylhexane	589-34-4	<l0q< td=""><td>⊲LOQ</td><td>47</td><td>p-Xylene &/or m-Xylene</td><td>108-38-3</td><td>⊲L0Q</td><td>⊲LOQ</td></l0q<>	⊲LOQ	47	p-Xylene &/or m-Xylene	108-38-3	⊲L0Q	⊲LOQ	
10	Cycloherone	110-82-7	⊲L0Q	⊲LOQ	48	o-Xylene	95-47-6	⊲L0Q	⊲L0Q	
11	Methylcyclohexane	108-87-2	⊲LOQ	⊲LOQ	Ш	Ketones (LOQ = Iµg/c/c; LOQ #	69, #53 =10µg/c/s;	#50, #51 - 50	ug/c/s)	
12	2,2,4-Trimethylpentane	540-84-1	<l0q< td=""><td>⊲LOQ</td><td>49</td><td>Acetone</td><td>67-64-1</td><td>48</td><td>⊲LOQ</td></l0q<>	⊲LOQ	49	Acetone	67-64-1	48	⊲LOQ	
13	n-Heptane	142-82-5	⊲LOQ	⊲LOQ	50	Acetoin	513-86-0	⊲LOQ	⊲LOQ	
14	n-Octane	111-65-9	⊲LOQ	⊲LOQ	51	Diacetone alcohol	123-42-2	⊲LOQ	⊲LOQ	
15	n-Nonane	111-84-2	⊲LOQ	⊲LOQ	52	Cycloheranone	108-94-1	⊲LOQ	⊲LOQ	
16	n-Decame	124-18-5	⊲LOQ	⊲LOQ	53	Isophorone	78-59-1	⊲LOQ	⊲LOQ	
17	n-Undecane	1120-21-4	⊲LOQ	⊲LOQ	54	Methyl ethyl ketone (MEX)	78-93-3	⊲LOQ	⊲LOQ	
18	n-Dodecane	112-40-3	-LOQ	⊲L0Q	55	Methyl isobutyl ketone (MIBK)	108-10-1	⊲L0Q	⊲L0Q	
19	n-Tridecane	629-50-5	⊲L0Q	⊲L0Q		Alcohols (1.00 -1µg/c/s; #56, #57, #58, #60 -10µg/c/s)				
20	n-Tetradecane	629-59-4	⊲L0Q	⊲LOQ	56	Ethyl alcohol	64-17-5	⊲LOQ	⊲LOQ	
21	α-Pinene	80-56-8	<l0q< td=""><td>⊲LOQ</td><td>57</td><td>n-Butyl alcohol</td><td>71-36-3</td><td>⊲L0Q</td><td>⊲LOQ</td></l0q<>	⊲LOQ	57	n-Butyl alcohol	71-36-3	⊲L0Q	⊲LOQ	
22	β-Pinene	127-91-3	⊲L0Q	⊲L0Q	58	Isobutyl alcohol	78-83-1	⊲L0Q	⊲L0Q	
23	D-Limonene	138-86-3	⊲L0Q	⊲LOQ	59	Isopropyl alcohol	67-63-0	⊲LOQ	⊲LOQ	
Ш	Chlorinated hydrocarbo	Δ 5 (LOQ = 1με	/clic; #30 −5 µg	ylc/k)	60	2-Ethyl hexanol	104-76-7	⊲LOQ	⊲LOQ	
24	Dichloromethane	75-09-2	⊲L0Q	⊲LOQ	61	Cycloheranol	108-93-0	⊲LOQ	⊲L0Q	
25	1,1-Dichloroethane	75-34-3	⊲LOQ	⊲LOQ	Ш	Acetates (LOQ =1µg/c/s; #62 =)	lθμg(c/k)			
26	1,2-Dichloroethane	107-06-2	<l0q< td=""><td>⊲LOQ</td><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td>⊲LOQ</td><td>⊲LOQ</td></l0q<>	⊲LOQ	62	Ethyl acetate	141-78-6	⊲LOQ	⊲LOQ	
27	Chloroform	67-66-3	⊲LOQ	⊲LOQ	63	n-Propyl acetate	109-60-4	⊲L0Q	⊲LOQ	
28	1,1,1-Trichloroethane	71-55-6	⊲LOQ	⊲LOQ	64	n-Butyl acetate	123-86-4	⊲LOQ	⊲LOQ	
29	1,1,2-Trichloroethane	79-00-5	⊲L0Q	⊲LOQ	65	Isobutyl acetate	110-19-0	⊲LOQ	⊲LOQ	
30	Trichloroethylene	79-01-6	⊲L0Q	⊲LOQ	Ш	Ethers (LOQ = 1µg/c/c; #66 = 10µ	g/cli)			
31	Carbon tetrachloride	56-23-5	⊲L0Q	<1.0Q	66	Ethyl ether	60-29-7	⊲LOQ	⊲LOQ	
32	Perchloroethylene	127-18-4	⊲L0Q	⊲LOQ	67	tert-Butyl methyl other (1818)	1634-04-4	⊲LOQ	⊲L0Q	
33	1,1,2,2-Tetrachloroethane	79-34-5	⊲L0Q	⊲LOQ	68	Tetrahydrofuran (THF)	109-99-9	⊲LOQ	⊲L0Q	
34	Chlorobenzene	108-90-7	⊲LOQ	⊲LOQ	Ш	Glycols (LOQ-1µg/ch; 869, 873-58µg/ch)				
35	1,2-Dichlorobenzene	95-50-1	⊲LOQ	⊲LOQ	69	PGME	107-98-2	⊲LOQ	⊲LOQ	
36	1,4Dichlorobenzene	106-46-7	⊲LOQ	⊲LOQ	70	Ethylene glycol diethyl ether	629-14-1	⊲LOQ	⊲LOQ	
Ш	Miscellaneous (Log #37-16	μg & #38-50μg/			71	PGMEA	108-65-6	⊲L0Q	⊲LOQ	
37	Acetonitrile	75-05-8	⊲LOQ	⊲LOQ	72	Cellosohre acetate	111-15-9	⊲LOQ	⊲LOQ	
38	n-Vinyl-2-pytrolidinone	88-12-0	-LOQ	⊲L0Q	73	DGMEA	112-15-2	⊲L0Q	⊲LOQ	
74	Extra compound (Log-1	106-94-5	mple) ⊲LOQ	<1.00	75	Extra compound (1.00 - 5 Naphthalene *	91-20-3	~LOQ	<1.00	
/4	Bromopropane *		<l0q 92</l0q 	⊲L0Q	13	Naphthalene * Worksheet check	91-20-3	_	<loq 23-5908-1</loq 	
ш	Total VOCs (1.0Q =56µg/compos	ава нестоп)	72	-Ind	ш	WOLKSHAR COME		24	23-3500-1	

Accreditation No. 3726

2023-5908

Page 2 of 4

Accredited for compliance with ISO/IEC 17025 - Testing

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

 Client: Stephenson
 Date Sampled: 23/11/2023

 Sample ID: 728863
 Date Analysed: 29/11/2023

 Reference Number: 2023-5908-2

W	C	CAS No	Front	Back	w.	Community	CACN-	Front	Back	
No	Compounds	CAS No	μg/se	ction	No	Compounds	CAS No	μg/section		
П	Aliphatic hydrocarbons	(LOQ =Iµg/c/s; i	F10, #18 - #23	=5µg/c/s)		Aromatic hydrocarbons (LOQ = 1µg/compound/section)				
1	2-Methylbutane	78-78-4	⊲LOQ	⊲LOQ	39	Benzene	71-43-2	⊲L0Q	⊲LOQ	
2	n-Pentane	109-66-0	⊲LOQ	⊲LOQ	40	Ethylbenzene	100-41-4	⊲L0Q	⊲LOQ	
3	2-Methylpentane	107-83-5	<l0q< td=""><td>⊲L0Q</td><td>41</td><td>Isopropyibenzene</td><td>98-82-8</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	⊲L0Q	41	Isopropyibenzene	98-82-8	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
4	3-Methylpentane	96-14-0	<l0q< td=""><td>⊲L0Q</td><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	⊲L0Q	42	1,2,3-Trimethylbenzene	526-73-8	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
5	Cyclopentane	287-92-3	-LOQ	⊲L0Q	43	1,2,4-Trimethylbenzene	95-63-6	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
6	Methylcyclopentane	96-37-7	⊲LOQ	⊲LOQ	44	1,3,5-Trimothylbenzene	108-67-8	⊲L0Q	⊲LOQ	
7	2,3-Dimethylpentane	565-59-3	⊲L0Q	⊲L0Q	45	Styrene	100-42-5	44	⊲LOQ	
8	n-Hexane	110-54-3	⊲LOQ	⊲LOQ	46	Tohiene	108-88-3	⊲L0Q	⊲LOQ	
9	3-Methylherane	589-34-4	⊲LOQ	⊲LOQ	47	p-Xylene &/or m-Xylene	108-32-3 &	⊲LOQ	⊲LOQ	
10	Cyclohemme	110-82-7	⊲LOQ	⊲LOQ	48	o-Xylene	95-47-6	⊲L0Q	⊲LOQ	
11	Methylcyclohexane	108-87-2	⊲LOQ	⊲LOQ		Ketones (Log-Iµg/a/s; Log #	69, #53 =10µg/c/c	#50, #51 -50	ug/c/s)	
12	2,2,4-Trimethylpentane	540-84-1	⊲LOQ	⊲LOQ	49	Acetone	67-64-1	56	⊲LOQ	
13	n-Heptane	142-82-5	⊲LOQ	⊲LOQ	50	Acetoin	513-86-0	⊲LOQ	⊲LOQ	
14	n-Octane	111-65-9	⊲L0Q	⊲LOQ	51	Diacetone alcohol	123-42-2	⊲L0Q	⊲LOQ	
15	n-Nonane	111-84-2	<l0q< td=""><td>⊲L0Q</td><td>52</td><td>Cyclohexanone</td><td>108-94-1</td><td>⊲L0Q</td><td>⊲L0Q</td></l0q<>	⊲L0Q	52	Cyclohexanone	108-94-1	⊲L0Q	⊲L0Q	
16	n-Decame	124-18-5	<l0q< td=""><td>⊲L0Q</td><td>53</td><td>Isophorone</td><td>78-59-1</td><td>⊲L0Q</td><td>⊲L0Q</td></l0q<>	⊲L0Q	53	Isophorone	78-59-1	⊲L0Q	⊲L0Q	
17	n-Undecane	1120-21-4	⊲LOQ	⊲LOQ	54	Methyl ethyl ketone (MEK)	78-93-3	⊲L0Q	⊲LOQ	
18	n-Dodecane	112-40-3	<l0q< td=""><td>⊲LOQ</td><td>55</td><td>Methyl isobutyl ketone (MIBK)</td><td>108-10-1</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	⊲LOQ	55	Methyl isobutyl ketone (MIBK)	108-10-1	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
19	n-Tridecane	629-50-5	<l0q< td=""><td>⊲L0Q</td><td></td><td colspan="2">Alcohols (LOQ =1µg/c/s; #56, #57, #58, #60 =10;</td><td colspan="2">ag/c/s)</td></l0q<>	⊲L0Q		Alcohols (LOQ =1µg/c/s; #56, #57, #58, #60 =10;		ag/c/s)		
20	n-Tetradecane	629-59-4	<l0q< td=""><td>⊲L0Q</td><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td>-L0Q</td><td>⊲L0Q</td></l0q<>	⊲L0Q	56	Ethyl alcohol	64-17-5	-L0Q	⊲L0Q	
21	α-Pinene	80-56-8	⊲L0Q	⊲L0Q	57	n-Butyl alcohol	71-36-3	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
22	β-Pinene	127-91-3	<l0q< td=""><td>⊲LOQ</td><td>58</td><td>Isobutyl alcohol</td><td>78-83-1</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	⊲LOQ	58	Isobutyl alcohol	78-83-1	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
23	D-Limonene	138-86-3	<l0q< td=""><td>⊲LOQ</td><td>59</td><td>Isopropyl alcohol</td><td>67-63-0</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	⊲LOQ	59	Isopropyl alcohol	67-63-0	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
П	Chlorinated hydrocarbo	MS (LOQ=1µg	/clic #38 =5 ₍₄₈₎	p(c/e)	60	2-Ethyl hexanol	104-76-7	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
24	Dichloromethane	75-09-2	⊲L0Q	⊲L0Q	61	Cycloheranol	108-93-0	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
25	1,1-Dichloroethane	75-34-3	<l0q< td=""><td>⊲L0Q</td><td></td><td>Acetates (1.00 -1µg/c/s; #62 -:</td><td>(θμg(c/c)</td><td colspan="2"></td></l0q<>	⊲L0Q		Acetates (1.00 -1µg/c/s; #62 -:	(θμg(c/c)			
26	1,2-Dichloroethane	107-06-2	-LOQ	⊲L0Q	62	Ethyl acetate	141-78-6	-LOQ	<l0q< td=""></l0q<>	
27	Chloroform	67-66-3	⊲L0Q	⊲L0Q	63	n-Propyl acetate	109-60-4	-LOQ	<l0q< td=""></l0q<>	
28	1,1,1-Trichloroethane	71-55-6	<l0q< td=""><td>⊲L0Q</td><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	⊲L0Q	64	n-Butyl acetate	123-86-4	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
29	1,1,2-Trichloroethane	79-00-5	⊲LOQ	⊲LOQ	65	Isobutyl acetate	110-19-0	⊲LOQ	⊲LOQ	
30	Trichloroethylene	79-01-6	⊲L0Q	⊲LOQ	П	Ethers (LOQ =1µg/c/s; #66 =16µ				
31	Carbon tetrachloride	56-23-5	-LOQ	⊲LOQ	66	Ethyl ether	60-29-7	⊲L0Q	⊲L0Q	
32	Perchloroethylene	127-18-4	⊲LOQ	⊲LOQ	67	tert-Butyl methyl other (1888)	1634-04-4	⊲LOQ	⊲LOQ	
33	1,1,2,2-Tetrachloroethane	79-34-5	⊲LOQ	⊲LOQ	68	Tetahydrofuran (110)	109-99-9	⊲LOQ	⊲LOQ	
34	Chlorobenzene	108-90-7	⊲LOQ	⊲LOQ		Glycols (1.00 =1µg/c/s; #69, #73 =58µg/c/s)				
35	1,2-Dichlorobenzene	95-50-1	⊲LOQ	⊲LOQ	69	PGME	107-98-2	-L0Q	<l0q< td=""></l0q<>	
36	1,4-Dichlorobenzene	106-46-7	⊲LOQ	⊲LOQ	70	Ethylene glycol diethyl ether	629-14-1	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>	
П	Miscellaneous (Log #37-16	μg & #38-58μg/c	ompound/san	opie)	71	PGMEA	108-65-6	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
37	Acetonitrile	75-05-8	-L0Q	⊲L0Q	72	Cellosohre acetate	111-15-9	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
38	n-Vinyl-2-pytrolidinone	88-12-0	⊲L0Q	⊲LOQ	73	DGMEA	112-15-2	<l0q< td=""><td>⊲LOQ</td></l0q<>	⊲LOQ	
	Extra compound (LOQ-1	0µg/compound/sa				Extra compound (1.09 - 5	łyg/compound/sa			
74	Bromopropane *	106-94-5	⊲L0Q	⊲L0Q	75	Naphthalene *	91-20-3	⊲L0Q	⊲L0Q	
Ш	Total VOCs (1.00 -56µg/compos	nd/section)	100	⊲LOQ		Worksheet check		20	23-5908-2	

Accreditation No. 3726

2023-5908

Page 3 of 4

Accredited for compliance with ISO/IEC 17025 - Testing

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

All compounds (numbered 1-73) that are reported in the analysis are covered within the scope of NATA accreditation. Any additional compounds denoted with * are not covered by NATA accreditation.

Method: WCA.207 Analysis of Volatile Organic Compounds in Workplace Air by Gas Chromatography/Mass Spectrometry

Limit of Quantitation (LOQ): 1 µg/sample except Cyclohexane, n-Dodecane, n-Tridecane, n-Tetradecane, a-Pinene, b-Pinene, Limonene and Trichloroethylene at 5 µg/sample; 10 µg/sample for Acetonitrile, Acetone, Isophorone, Ethanol, n-Butyl alcohol, Isobutyl alcohol, 2-Ethyl hexanol, Ethyl acetate, Ethyl ether and Bromopropane; 50 µg/sample for n-Vinyl-2-pyrrolidione, Acetoin, Diacetone alcohol, PGME, DGMEA and Naphthalene.

Method Description: Volatile organic compounds were trapped from the workplace air onto charcoal tubes by the use of a personal air monitoring pump. The volatile organic compounds were described from the charcoal in the laboratory with CS₂. An aliquot of the describant was analysed by gas chromatography with mass spectrometry detection.

PGME: Propylene Glycol Monomethyl Ether PGMEA: Propylene Glycol Monomethyl Ether Acetate DGMEA: Diethylene Glycol Monoethyl Ether Acetate

Measurement Uncertainty: The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted to lie. The uncertainty estimate is an expanded uncertainty using a coverage factor of 2, which gives a level of confidence of approximately 95%. The estimate is compliant with the "ISO Guide to the Expression of Uncertainty in Measurement" and is a full estimate based on in-house method validation and quality control data. The measurement uncertainty relates to the analysis of the analyse on the sampling device and does not take into consideration the sampling parameters such as pump flowrate, time, temperature and pressure. The measurement of uncertainty estimates are available upon request.

2023-5908

Page 4 of 4

Accredited for compliance with ISO/IEC 17025 - Testing

STYRENE SCRUBBER EXHAUST EMISSION MONITORING - 23 NOVEMBER 2023

40-44 Anzac Avenue, Smeaton Grange NSW 2567

Rocbolt Resins PTY LTD

DOCUMENT CONTROL

Prepared by: Trinity Consultants Australia

ABN 62 630 202 201 A: 11 / 35 Ingleston Rd. Wakerley, QLD 4154 T: +61 7 3255 3355

E: brisbane@trinityconsultants.com

Reference	Date	Description	Prepared	Checked
237401.0192R01V01 _draft	4/12/23	Draft for internal review	Mitchell Steele	-
237401.0192.R01.V01	12/12/2023	Final	Mitchell Steele	Gary Hall
237401.0192.R01.V02	13/12/2023	Updated Final: Revised PM ₁₀ detection limits	Mitchell Steele	Gary Hall

Document Approval					
Approver Signature	GHall				
Name	Gary Hall				
Title	Manager – Air Monitoring				

NATA Accreditation Number: 15841
Accredited for compliance with ISO/IEC 17025 – Testing
Should you have any queries regarding the contents of this document, please contact Trinity Consultants Australia.

COPYRIGHT AND DISCLAIMERS

This report has been prepared by Trinity Consultants Australia (Trinity) with all reasonable skill, due care and diligence in accordance with Trinity Quality Assurance Systems, based on ISO 9001:2015. This report and the copyright thereof are the property of Trinity and must not be copied in whole or in part without the written permission of Trinity.

This report takes account of the timescale, resources and information provided by the Client, and is based on the interpretation of data collected, which has been accepted in good faith as being complete, accurate and valid.

Trinity disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work,

This report has been produced specifically for the Client and project nominated herein and must not be used or retained for any other purpose. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from Trinity.

CONTENTS

1.	INT	RODUCTION	. 4
		HODOLOGY	
		Emission Testing	
	2.2	Deviation from Methods	. 5
	2.3	Laboratory Analysis	. 5
3.	RES	ULTS	. 6
	3.1	Production Conditions	. 6
	3.2	Monitoring Results - Dry Scrubber Exhaust Stack	. 6
	3.3	Accuracy of Monitoring Results	. 6

APPENDICES

Appendix A Glossary

TABLES

Table E1.1: Summary of Results for the Rocbolt Resins Dry Scrubber Exhaust Stack	3
Table 1.1: Monitoring Locations and Parameters	4
Table 2.1: Summary of Emission Monitoring Methods	5
Table 2.2: Table of NATA accredited Laboratories with Accreditation Number	5
Table 3.1: Flow and Sample Characteristics for the Dry Scrubber Exhaust Stack	6
Table 3.2: Estimated Method Uncertainties for the Dry Scrubber Exhaust Stack	б

EXECUTIVE SUMMARY

Stack Emission testing for VOC's, NO_x and Particulate matter less than 10 microns (PM_{10}) was conducted at the Rocbolt Resins Pty Ltd site in Smeaton Grange, NSW. The emission testing from the Dry Scrubber Exhaust Stack was completed on 23 November 2023. A summary of the results are included in **Table E1.1**.

Table E1.1: Summary of Results for the Rocbolt Resins Dry Scrubber Exhaust Stack

Paramete r	Results	Units	EPL 20944 Licence Limit
Particulate Matter (PM ₁₀)	<0.15	mg/Nm ³	-
Styrene	7.7	mg/Nm ³	220
TVOC (as n-propane)	10.1	mg/Nm ³	-
Nitrogen Oxides (expressed as NO ₂)	<0.21	mg/Nm³	-
Benzene	<0.017	mg/Nm ³	-
Velocity	4.7	m/s	-
Temperature	26	°C	-
Molecular weight (dry)	28.85	g/g-mole	-
Volumetric flow	0.295	Nm3/s	-
Moisture	2.5	%	-
Oxygen	21.03	%	-

1. INTRODUCTION

Stephenson Environmental Management Australia (SEMA) commissioned Trinity Consultants Australia to assist with conducting monitoring of air emissions from the Rocbolt Resins Pty Ltd site in Smeaton Grange NSW. The emission testing from the Dry Scrubber Exhaust stack was completed on 23 November 2023.

The objectives of the emission testing were to meet the annual monitoring requirements for the stack under the site's Environmental Protection Licence (EPL) 20944 to determine if the concentration limits specified in the EPL were met.

Table 1.1 details the monitoring location and the monitoring performed.

Table 1.1: Monitoring Locations and Parameters

Parameter	Styrene Scrubber Exhaust stack	Units of Measure	NSW Approved Test Method	EPL 20944 Licence Limit
VOC's including Styrene	2 Samples	mg/Nm³	OM-2, TM-34	220 (Styrene)
Particulate matter less than 10 microns	1 sample	mg/Nm³	OM-5 USEPA 201A	-
Nitrogen Oxides	Continuous	mg/Nm³	TM-11	-
Oxygen	✓	%	TM-25	-
Moisture	✓	%	TM-22	-
Molecular weight of stack gases	✓	g/g-mole	TM-23	-
Temperature	✓	°C	TM-2	-
Velocity	✓	m/s	TM-2	-
Volumetric flow rate	✓	m³/s	TM-2	-

The monitoring of air emissions at the Wetherill Park facility was completed during normal operating conditions. Any factors that may have affected the monitoring results were not observed by, or brought to the notice of Trinity Consultants Australia staff except where noted in this report.

2. METHODOLOGY

2.1 Emission Testing

Table 2.1 below lists the Methods used when undertaking emission monitoring at the Rocbolt Resins Pty Ltd site.

All air quality monitoring undertaken by the Trinity Consultants Australia staff has been undertaken in accordance with the methods identified in **Table 2.1** below unless as specified in section 2.2 below.

Table 2.1: Summary of Emission Monitoring Methods

Measurement Parameter	Method Equivalency			
Temperature	TM-2 (USEPA Method 2 Determination of Stack Gas Velocity and Flow Rate)			
Dry Gas Density	TM23 (USEPA Method 3 Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources)			
Flow	TM-2 (USEPA Method 2 Determination of Stack Gas Velocity and Flow Rate)			
Moisture Content	TM-22 (USEPA Method 4 Determination of Moisture Content in Stack Gases)			
Molecular Weight	TM23 (USEPA Method 3 Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources)			
NO _X	TM-11 (US EPA Method 7E Determination of Nitrous Oxide emissions from stationary sources)			
Oxygen	TM23 (USEPA Method 3a Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources)			
Particulate Matter less than 10 microns (PM ₁₀)	OM-5 (USEPA 201A Determination of PM10 and PM2.5 Emissions from Stationary Sources)			
VOC's (including Styrene, Benzene, Toluene, Acetone)	TM-34 (USEPA Method 18 Measurement of Gaseous Organic Compounds by Gas Chromatography)			

2.2 Deviation from Methods

Post sampling, VOC sample tubes were provided to SEMA who submitted the samples to Test Safe Laboratories for analysis.

2.3 Laboratory Analysis

Table 2.2 below presents a list of the NATA accredited laboratories that performed the applicable analysis and their NATA accreditation number and the report number.

Table 2.2: Table of NATA accredited Laboratories with Accreditation Number

Measurement Parameter	NATA Accreditation Number	Report Number	
VOC's (including Styrene, Benzene, Toluene, Acetone)	SafeWork NSW TestSafe Australia 3726	2023-5908	

3. RESULTS

3.1 Production Conditions

On the day of testing, the plant operating procedures and production rate was considered typical by Rocbolt Resins Pty Ltd personnel.

3.2 Monitoring Results - Dry Scrubber Exhaust Stack

Results of emissions monitoring for the Dry Scrubber Exhaust Stack are provided in **Table 3.1** below for emissions monitoring completed on 23 November 2023.

Table 3.1: Flow and Sample Characteristics for the Dry Scrubber Exhaust Stack

Parameter	Units of Measure	Average Measured Concentration	EPL 20944 Licence Limit
Styrene	mg/Nm³	7.70	220
Styrene	g/s	0.0023	-
TVOC (as n-propane)	mg/Nm³	10.15	-
TVOC (as n-propane)	g/s	0.003	-
Benzene	mg/Nm³	<0.017	
Benzene	g/s	<0.0000053	
NO _x (expressed as NO ₂)	mg/Nm³	<0.21	-
NO _x (expressed as NO ₂)	g/s	<0.00006	-
Particulate Matter (PM ₁₀)	mg/Nm³	<0.15	-
Particulate Matter (PM ₁₀)	g/s	<0.00044	-
Stack Temperature	°C	26	-
Velocity	m/s	4.7	-
Volumetric flow	Nm³/s	0.295	-
Moisture	%	2.5	-
Molecular weight (dry)	g/g-mole	28.85	-
Average Oxygen	%	21.03	-

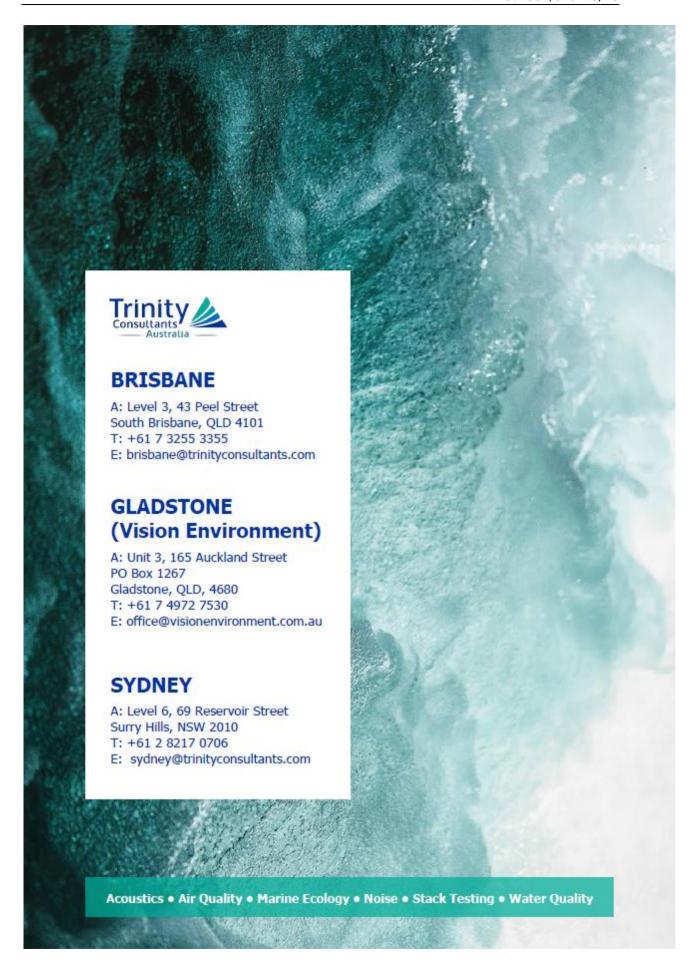
3.3 Accuracy of Monitoring Results

Table 3.2 presents a summary of the estimated method uncertainties for each of the monitoring parameters.

Table 3.2: Estimated Method Uncertainties for the Dry Scrubber Exhaust Stack

Measurement Parameter	t Method % Uncertainty		Uncertainty	Units
Oxygen	USEPA Method 3A	2	0.42	%
Particulates	M201A	10	_a	mg/Nm³
NO _x	US EPA Method 7E	5	_a	mg/Nm³
VOC	USEPA Method 18	12.26	1.03	mg/Nm ³

[#] Uncertainty values cited are calculated at the 95% confidence level, with a coverage factor of 2.


^{*} NOx results less than detection limits.

APPENDIX A GLOSSARY

Parameter or Term	Description
<	The analytes tested for was not detected, the value stated is the reportable limit of detection
μд	Micrograms (10 ⁻⁶ grams)
AS	Australian Standard
dscm	dry standard cubic meters (at 0°C and 1 atmosphere)
g	grams
kg	kilograms
m	metres
m ³	Cubic Metres, actual gas volume in cubic metres as measured.
mg	Milligrams
min	Minute
mg/m ³	Milligrams (10 ⁻³) per cubic metre.
mmH ₂ O	Millimetres of water
Mole	The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly 6.022 140 76 x 10^{23} elementary entities. This number is the fixed numerical value of the Avogadro constant, N_A , when expressed in the unit mol ⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles. This definition implies the exact relation $N_A = 6.022 \ 140 \ 76 \times 10^{23} \ mol^{-1}$. Inverting this relation gives an exact expression for the mole in terms of the defining constant N_A : $I mol = \left(\frac{6.022 \ 140 \ 76 \times 10^{23}}{N_A} \right)$ The effect of this definition is that the mole is the amount of substance of a system that contains 6.022 140 76×10^{23} specified elementary entities.
N/A	Not Applicable
ng	Nanograms (10 ⁻⁹ grams)
Nm ³	Normalised Cubic Metres - Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa).
ou	Odour Units
°C	Degrees Celsius
μg/m³	Micrograms (10 ⁻⁶) per cubic metre. Conversions from μg/m ³ to parts per volume concentrations (ie, ppb) are calculated at 25 °C.
ppb / ppm	Parts per billion / million.
PM	Particulate Matter.
PM ₁₀ , PM _{2.5} , PM ₁	Fine particulate matter with an equivalent aerodynamic diameter of less than 10, 2.5 or 1 micrometres respectively. Fine particulates are predominantly sourced from combustion processes. Vehicle emissions are a key source in urban environments.
sec	Second
Sm ³	Standardised Cubic Metres - Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa) and corrected to a standardised value (e.g. 7% O ₂).
STP	Standard Temperature and Pressure (0°C and 101.3 kPa).
TVOC	Total Volatile Organic Compounds. These compounds can be both toxic and odorous.
USEPA	United States Environmental Protection Agency

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

PO Box 6398 Silverwater NSW 2128 Australia

Tel: (02) 9737 9991

Chain of Custody & Analysis Request

Document No: 526251 Project No: Purchase Order No.: 5297 Purchase Results Required By: Normal __ Lab Name: Workcover Testsafe Australia ____ (02) 9473 4000 ___ Lab Telephone: Lab Facsimile: (02) 9980 6849 _ Lab Contact Name: Martin _

Location	Sampling Date	Sample ID		Lab Sample ID	Parameter	NSW Test Method	Workcover Method	Temperature Chilled/ Ambient
R1	23/11/2023	728862			VOC Screen including	TM-34	WCA.207	
R2	23/11/2023	728863			styrene & benzene	TM-34	WCA.207	
Relinquished By: margot kimber Date/Time: 24/11/2023		3 @ 10:30	Received By:		Date/Time:	/ / @		
Samples Sent Intact: YES / NO			Samples Received Intact: YES / NO					
Comments: Please contact us immediately should you have any questions with regards to the samples or analysis or if there will be any delays with the reporting.								

P: QUALITY SYSTEMS/FORMS/SITE WORK ISSUE DATE: 27 May 2016